Want to pass your SnowPro Advanced: Data Engineer Certification (DEA-C01) DEA-C01 exam in the very first attempt? Try Pass2lead! It is equally effective for both starters and IT professionals.
VCE
A financial company wants to implement a data mesh. The data mesh must support centralized data governance, data analysis, and data access control. The company has decided to use AWS Glue for data catalogs and extract, transform, and load (ETL) operations.
Which combination of AWS services will implement a data mesh? (Choose two.)
A. Use Amazon Aurora for data storage. Use an Amazon Redshift provisioned cluster for data analysis.
B. Use Amazon S3 for data storage. Use Amazon Athena for data analysis.
C. Use AWS Glue DataBrewfor centralized data governance and access control.
D. Use Amazon RDS for data storage. Use Amazon EMR for data analysis.
E. Use AWS Lake Formation for centralized data governance and access control.
A company loads transaction data for each day into Amazon Redshift tables at the end of each day. The company wants to have the ability to track which tables have been loaded and which tables still need to be loaded.
A data engineer wants to store the load statuses of Redshift tables in an Amazon DynamoDB table. The data engineer creates an AWS Lambda function to publish the details of the load statuses to DynamoDB.
How should the data engineer invoke the Lambda function to write load statuses to the DynamoDB table?
A. Use a second Lambda function to invoke the first Lambda function based on Amazon CloudWatch events.
B. Use the Amazon Redshift Data API to publish an event to Amazon EventBridqe. Configure an EventBridge rule to invoke the Lambda function.
C. Use the Amazon Redshift Data API to publish a message to an Amazon Simple Queue Service (Amazon SQS) queue. Configure the SQS queue to invoke the Lambda function.
D. Use a second Lambda function to invoke the first Lambda function based on AWS CloudTrail events.
A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.
Which data pipeline solutions will meet these requirements? (Choose two.)
A. Use an Amazon EventBridge rule to run an AWS Glue job every 15 minutes. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.
B. Use an Amazon EventBridge rule to invoke an AWS Glue workflow job every 15 minutes. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.
C. Configure an AWS Lambda function to invoke an AWS Glue crawler when a file is loaded into the S3 bucket. Configure an AWS Glue job to process and load the data into the Amazon Redshift tables. Create a second Lambda function to run the AWS Glue job. Create an Amazon EventBridge rule to invoke the second Lambda function when the AWS Glue crawler finishes running successfully.
D. Configure an AWS Lambda function to invoke an AWS Glue workflow when a file is loaded into the S3 bucket. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.
E. Configure an AWS Lambda function to invoke an AWS Glue job when a file is loaded into the S3 bucket. Configure the AWS Glue job to read the files from the S3 bucket into an Apache Spark DataFrame. Configure the AWS Glue job to also put smaller partitions of the DataFrame into an Amazon Kinesis Data Firehose delivery stream. Configure the delivery stream to load data into the Amazon Redshift tables.